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General theory for packing icosahedral shells
into multi-component aggregates

Nicolò Canestrari, Diana Nelli & Riccardo Ferrando

Multi-component aggregates are being intensively researched in various fields
because of their highly tunable properties and wide applications. Due to the
complex configurational space of these systems, research would greatly ben-
efit from a general theoretical framework for the prediction of stable struc-
tures, which, however, is largely incomplete at present. Here we propose a
general theory for the construction of multi-component icosahedral struc-
tures by assembling concentric shells of different chiral and achiral types,
consistingof particles of different sizes. Bymapping shell sequences intopaths
in the hexagonal lattice, we establish simple and general rules for designing a
wide variety ofmagic icosahedral structures, andwe evaluate the optimal size-
mismatch between particles in the different shells. The predictions of our
design strategy are confirmed bymolecular dynamics simulations and density
functional theory calculations for several multi-component atomic clusters
and nanoparticles.

The research on multi-component nanoaggregates is very active and
spans many different fields. High-entropy alloy nanocrystals, consist-
ing of nanometre-sized solid solutions of five or more elements, have
attractedmuch attentiondue to their enhanced structural stability and
catalytic activity1–4. Ordered architectures are explored as well. Among
them, the assembly of concentric shells of different compositions into
multilayer aggregates is a widely employed tool to protect or func-
tionalise the core5,6, improve the stability7–10, and adjust the surface
properties11,12 of the nanostructure.

The wide range of possible compositions and the huge config-
urational space of multi-component systems are key to their broad
success.However, such inherent complexity posesmajor challenges to
the design and synthesis of nanoaggregates with well-defined and
durable configurations. A general theory for the prediction of stable
multicomponent structures would be an essential reference for the
design and synthesis of nanoparticles for customised applications.
However, such a theory is lacking at present.

Here, we propose a theoretical approach which generalises and
unify concepts from crystallography13 and structural biology14–16 to
develop a design strategy of multi-component clusters and
nanoparticles.

We consider multi-component aggregates formed by particles of
different sizes and establish general criteria for assembling these

particles into highly symmetric multi-shell structures. In particular, we
apply our approach to icosahedral structures. Icosahedra combine the
maximum symmetry with the most compact shape. These properties
favour energy stability in clusters and nanoparticles17,18 and give an
evolutionary advantage in biological systems such as viruses14,16,19.
Accordingly, icosahedra have been observed in a huge variety of sys-
tems, including clusters and nanoparticles20–24, colloidal
aggregates25–27, intermetallic compounds and quasicrystals28–30, viral
capsids, bacterial organelles, DNA and protein aggregates31–35.

Several research efforts can be found in the literature, starting
with the seminal work of Caspar and Klug14, dedicated to rationalising
the structure of individual icosahedral shells, especially in the field of
virus biology15,16,36,37. Icosahedral shells are made of one layer of parti-
cles, which can be arranged according to achiral or chiral symmetries.
Chiral shells present all rotational symmetry operations of the icosa-
hedron but lack its reflection planes.

On the contrary, there is no general theory for assembling toge-
ther multiple shells of different radii, with achiral and chiral symme-
tries, into concentric arrangements to generate compact icosahedral
aggregates. In metal nanoparticles and clusters, and in aggregates of
colloidal particles, compact structures are much more commonly
observed than single shells17,20,21,24–27. The theoretical efforts to
assemble multi-shell icosahedra are rather limited. They began with
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the historical works of Bergman et al.38 andMackay13, both concerning
achiral structures only. In particular, Mackay constructed icosahedra
by packing spheres of equal size arranged in shells around a central
particle. Mackay icosahedra turns out to be built of 20 distorted tet-
rahedra, in which particle layers are arranged into the stacking of the
face-centred cubic lattice (ABCABC...). Most icosahedra observed in
metal clusters and nanoparticles are ofMackay type20–22,24. Mackay also
proposed a possible termination by a single shell in hexagonal close-
packed (hcp) stacking (giving, for example, the sequence ABCABCB),
known as the anti-Mackay shell. Anti-Mackay terminations have been
recently observed in colloidal aggregates25,26. Even fewer theoretical
efforts have been devoted to constructing icosahedra that include
chiral shells. These efforts have been limited to adding a single chiral
shell on top of an achiral Mackay core39–41.

The key point of our theoretical approach is themapping ofmulti-
shell structures into paths in the hexagonal lattice. The mapping
naturally leads to the design ofmulti-shell sequences corresponding to
an alternative series of icosahedral magic numbers. Furthermore, the
mapping allows us to predict which sequences exhibit spontaneous
symmetry breaking from achiral to chiral structures. In the field of
metal clusters and nanoparticles, chiral icosahedra are especially
interesting for their applications to catalysis41. In all cases, we
demonstrate that icosahedra are stabilised by the size mismatch
between particles of different shells and evaluate the optimal
mismatch for energetic stability. We note that, due to the
contraction of pair distances between particles in adjacent shells13, the
icosahedron is naturally suitable for accommodating particles of
different sizes in different shells. Our approach is generalised also to
anti-Mackay shells, so that it allows us to derive a design principle for
the structures observed in colloidal aggregates25–27, and to predict
others.

Our design strategy is validated by numerical calculations for
several model systems and by ab initio calculations for alkali metal
clusters. The predictions of our theory are further confirmed by
simulations of the growth of alkali and transition metal nanoparticles
including up to four different elements. These simulations show that
atoms naturally self-assemble into the predicted multi-shell icosahe-
dral structures, including those with symmetry-breaking shell
sequences. Although the applications presented below concern
atomic clusters and nanoparticles, due to the general character of its
basic assumptions, our theory can be applied to the design of aggre-
gates of other particle types, such as aggregates of colloidal particles
and complex molecules of biological interest.

Results
Mapping icosahedra into paths
Here, we develop our theoretical framework, whose starting point is
the well-known approach of Caspar and Klug (CK)14–16, which was ori-
ginally proposed for rationalising and predicting the architecture of
icosahedral viral capsids. Specifically, they developed a general
method for the construction of individual icosahedral shells, which is
based on cutting and folding leaflets from the two-dimensional hex-
agonal lattice and produces achiral and chiral arrangements of parti-
cles on the icosahedral surface.

The CK construction is shown in Fig. 1a. A segment is drawn
betweenpoints of coordinates (0, 0) and (h, k) with respect to thebasis
vectors of the hexagonal lattice; h and k are integer non-negative
numbers so that the segment always connects two lattice points. The
segment is the base of an equilateral triangle, which is replicated 20
times to form a leaflet, which is then cut and folded to generate an
icosahedral shell with a well-defined surface lattice.

In the CK theory, the triangulation number T of an icosahedral
shell is defined as the square length of the triangular edge, and is
calculated as T = h2 + k2 + hk. The edge and radius of the shell are

ffiffiffiffi
T

p

and sinð2π=5Þ
ffiffiffiffi
T

p
, respectively. Assigning one particle to each lattice

point, the shell contains 10 T + 2 particles (see Supplementary
Note 1.1).

Shells are achiral or chiral depending on the angle θCK between
the h-axis and the segment of the CK construction. Achiral shells cor-
respond to segments with θCK = 0°, 30° and 60°. Segments on a coor-
dinate axis correspond to the achiral shells described by Mackay (MC)
in his work on the packing of equal spheres13. Shells built on segments
on the diagonal (h = k, θCK = 30°) are here called of Bergman (BG) type
since the smallest is the outer shell of the Bergman cluster30,38. All other
shells are chiral, with enantiomers symmetrically placed with respect
to the diagonal. We remark that, in the CK theory, an icosahedral shell
is uniquely determined by the segment endpoint (h, k) in the hex-
agonal lattice; therefore, in the following, icosahedral shells will be
denoted by their (h, k).

We begin our generalised construction by grouping icosahedral
shells into chirality classes. In Fig. 1b, points in the hexagonal lattice are
coloured according to the chirality class of the corresponding icosa-
hedral shell. From each lattice point on the diagonal, a chirality class
originates, which we call Chn; this comprises the (n, n) BG shell, the
shells with h = n and k > n, and their enantiomers (h > n, k = n). For
example, shells of the Ch1 class have either h = 1 or k = 1, whereas the
second index increases starting from 1. MC shells are grouped into
class Ch0, together with the one-particle shell (0, 0). The radius and
the number of particles in the shell increase with the non-constant
index, so that larger and larger shells are found while moving farther
from the diagonal. Shells within the same chirality class share a similar
particle arrangement on the icosahedral surface, whereas shells
belonging to different classes are clearly different (see Fig. 1c, d). The
grouping of icosahedral shells into chirality classes is key to rationalise
and predicting their optimal packing and their dynamic assembling
into tightly packed structures. This will be clarified and deeply dis-
cussed in the following.

The main point of our construction consists of assembling con-
centric shells into aggregates by drawing paths in the hexagonal lat-
tice. As a first example, we consider a path along a coordinate axis, e.g.,
the k axis (Fig. 2a), starting from k =0 and making steps
(0, k) → (0, k + 1) up to k = i − 1. This path assembles i concentric MC
shells of larger and larger size into a Mackay icosahedron13,17, a well-
known structure observed in many experiments on clusters20,21,24,42,43,
which is thus recovered as a special case of our construction. Mackay
icosahedra are tightly packed structures consisting of 20 distorted
tetrahedra17 in which the particles are arranged according to the face-
centred-cubic (fcc) lattice. The number of particles in an MC icosahe-
dronmadeof i shells isNi = (10i3 − 15i2 + 11i − 3)/3, whichgives the series
of magic numbers 1, 13, 55, 147, 309,...

In general, paths can be drawn by allowing different increments at
each step. Here we deal with the simplest generalisation, which con-
sists of choosing between (h, k) → (h, k + 1) and (h, k) → (h + 1, k) (other
types of steps in the hexagonal plane will be discussed in the follow-
ing). In this case, the number of shells in a path from the origin to a
point (h, k) is i = h + k + 1. Such paths are inspired by theMackaypath of
Fig. 2a, in which one index is incremented at steps of one, whereas the
other is kept constant and equal to zero. Allowing for different ele-
mentary steps in the hexagonal plane allows the building of a wide
variety of icosahedral structures, which retain the densely packed
character of the Mackay icosahedron.

Wedistinguish three cases, as shown in Fig. 2b. If (h, k) is above the
diagonal, the elementarymove (h, k)→ (h, k + 1) conserves the chirality
class of the shell, i.e., the shell we are adding belongs to the same class
of the previous one. On the contrary, by the move (h, k) → (h + 1, k) the
chirality class is incremented. If (h, k) is below the diagonal, the
opposite applies. For (h, k) in the diagonal, i.e., for shells of BG type,
both steps conserve the class; specifically, the two steps are equivalent
since the corresponding added shells are enantiomers, with the same
size and particle arrangement but opposite chirality.
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Fig. 2 |Mapping icosahedra intopaths. aPathof aMackay icosahedron: i = 5 shells are assembledon topof eachother.bThe threepossible caseswhenchoosingbetween
(h, k) → (h, k + 1) and (h, k) → (h + 1, k) at each step of the path. In (b) points are coloured according to the chirality class of the corresponding shell, as in Fig. 1b.
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Fig. 1 | Caspar-Klug shells and chirality classes. a Caspar-Klug construction14–16.
The coordinate axes h and k ((h, k) non-negative integers) are at 60°. From left to
right: a segment from (0, 0) to (h, k) is drawn and an equilateral triangle is con-
structed on it; the triangle is repeated 20 times to form a leaflet that is cut and
folded into an icosahedral shell. b Correspondence between (h, k) points and ico-
sahedral shells. The points on the coordinate axis (light blue) correspond to achiral
MC shells13,18, those on the diagonal (red) to achiral BG shells30,38. All other points
correspond to chiral shells. Shells are grouped into classes Chn as explained in the

text (MC ≡ Ch0). Green and red points correspond to Ch1 and Ch2 shells, respec-
tively. c The first four right-handed shells of the Ch1 class. The triangles in the
bottom row (identified by their (h, k)) show the angle θ = 60° − θCK between the
facet edge and the line connecting the vertex to a nearest neighbour point, that
decreases with increasing k. d Achiral and right-handed shells with h + k = 6. From
left to right, MC, Ch1, Ch2 and BG shells. θ increases from 0° to 30° fromMC to BG.
In the top rows of (c and d) the colour shades identify symmetrically equivalent
particles.
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When assembling shells in physical systems, one must bear in
mind that in the icosahedron, the radius is shorter than the edge by
sinð2π=5Þ � 0:9511, which has a direct effect on the packing of con-
centric shells. In the Mackay icosahedron of equal spheres13, the dis-
tance between spheres in neighbouring shells is shorter by about 5%
than that between spheres in the same shell. Similar considerations
hold for shells belonging to other chirality classes, assembled
according to the path rules identified so far; in some cases, the dif-
ference between intra-shell and inter-shell nearest-neighbour dis-
tances is even larger. These considerations naturally lead to the idea of
assembling shells in which particles in different shells have different
sizes, which we better clarify below.

We consider the case of a core with i shells, to which we add the
outer shell i + 1. Particles in the core and in the outer shell have dif-
ferent sizes.We define the sizemismatch smi,i+1 = (di+1 − di)/di, with di+1
and di particle sizes in shells i + 1 and i, respectively.

In the example of Fig. 3a, b, the core is made of fiveMC shells, i.e.,
it is terminated by the (0, 4) shell. According to our path rules, the
outer shell can be either the (0, 5) MC shell (same class) or the (1, 4)
Ch1 shell (different class). We consider a simple model, in which all
particles interact by the well-known Lennard-Jones (LJ) potential;
specifically, the interaction energy is the same for all particles, the only
difference being the equilibrium distance of pair interactions, which
accounts for particles of different sizes (see the Methods section). In
Fig. 2a, we calculate the binding energy depending on the size mis-
match and determine the mismatch that minimises the energy of the
whole aggregate. For bothMCand Ch1 shells, this optimalmismatch is

positive, i.e., it is favourable to have bigger particles in the outer shell
than in the core, and it is larger for Ch1 than for MC shells.

The optimal mismatch can be estimated also by geometric pack-
ing arguments, which are discussed in detail in Supplementary Note 1.
Here we recall only the main assumption and give the final result. In
order to evaluate the optimal mismatch between particles of shells i
and i + 1 it is reasonable to impose that

ri+ 1 � ri =
di +di + 1

2
ð1Þ

where ri and ri+1 are the radii of the respective shells, di and di+1 are the
particle diameters in these shells. For atomic systems, these diameters
are estimated from the nearest-neighbour distance of atoms in their
crystal lattice. Recalling that the relation between the radii and the
triangulation numbers of the shells

ri =di sin
2π
5

� � ffiffiffiffiffi
Ti

p
ð2Þ

one finally obtains the following approximate expression for the
optimal size mismatch

smi, i+ 1 =
2 sin 2π

5

� �ð1 + ξÞ ffiffiffiffiffi
Ti

p
+ 1

2 sin 2π
5

� � ffiffiffiffiffiffiffiffiffiffi
Ti+ 1

p
� 1

� 1: ð3Þ

Fig. 3 | Optimal size mismatch. a Binding energy per atom for clusters made of a
corewithfiveMCshells plus a sixth shell, which is eitherMC(blue curve) orCh1 (red
curve). Interactions are of Lennard-Jones (LJ) type (see “Methods”). The particles of
the sixth shell differ from those in the core only by their size. The energy is in units
of the ε of the LJ potential. The structures are shown in (b). c Comparison of the
optimalmismatchbetweensteps (0, k)→ (0,k + 1) (blue curve) and (0, k)→ (1, k) (red
curve), corresponding to additional MC andCh1 shells on anMC core, respectively.
Theoptimalmismatchof Eq. (3) (GEOvalues) is compared to LJ andMorsepotential

results. TheMorse potential data are given for three values (4,5,6) of the parameter
α, that regulates the width of the potential well (see the Methods section).
d Comparison between steps (1, k) → (1, k + 1) (yellow curve) and (1, k) → (2, k)
(orange curve), corresponding to additional Ch1 and Ch2 shells on a core con-
taining k MC and one Ch1 shells, respectively. The optimal mismatch of Eq. (3)
(GEO) is compared to LJ data. Source data of (a, c, d) are provided as a Source
Data file.
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Here, ξ ≪ 1 is an expansion coefficient of pair distances in the core,
which depends on the number and the type of shells of the same
component in the core (see Supplementary Note 1.4).

In Fig. 3c, d the results of Eq. (3) are compared to those for LJ and
Morse clusters. Data in Fig. 3c are obtained as in Fig. 3a, but for dif-
ferent sizes of theMackay core,whereas in Fig. 3dwe consider a cluster
made of aMackay core plus a Ch1 shell, to whichwe add a further shell
of either Ch1 or Ch2 type. In all cases the agreement is good. Eq. (3) is
thus a reliable guide for the semi-quantitative evaluationof theoptimal
mismatch, which demonstrates the key role of geometric factors in
determining it.

For the paths of Fig. 3, the optimal mismatch is always positive,
i.e., icosahedral aggregates benefit from having bigger particles in the
outer shells; in addition, much larger mismatches are found for class-
changing than for class-conserving steps. These features are general
for all icosahedra constructed according to the path rules identified so
far, and are key to design stable icosahedral aggregates and to predict
their natural growth modes.

Design strategy for icosahedral aggregates
Our theory is now applied to the path-based design of icosahedral
aggregates. In order to construct amulti-shell icosahedral aggregate, a
path is drawn according to the rules in Fig. 2 and, for each step, the
optimal mismatch is estimated by Eq. (3). Then, particles of the
appropriate sizes are associated with each shell.

An example is shown in Fig. 4, where the path connecting BG
shells through neighbouring chiral shells is considered (Fig. 4a). This
path alternates class-conserving and class-changing steps, sponta-
neouslybreakingmirror symmetries after thefirst BG shell. It produces
a series of magic numbers

Ni =
1
4
ð10 i3 � 15 i2 + 18 i� bÞ, ð4Þ

with b = 4 and b = 9 for even andodd i, i.e.,Ni = 1, 13, 45, 117, 239, 431, . . .
(see Supplementary Note 1.2).

The path of Fig. 4a is used to design multi-species alkali clusters.
The values of size mismatch between alkali atoms, estimated from
nearest-neighbour distances in bulk crystals, are in the range of the
optimal values for this path (Fig. 4b). In addition, these species present
a weak tendency to mix and the bigger atoms have smaller cohesive
energy; this produces a general tendency for the bigger atoms to stay
in the surface layers, which, as we have seen in the previous section, is
exactly what is needed for stabilising icosahedral aggregates.

The clusters in Fig. 4c correspond to i = 3 (Na13@K32, Na13@Rb32)
and to i = 4 (Na13@K32@K72, Na13@Rb32@Rb72, Na13@K32@Rb72). In
these clusters, the atomic species is always changed in class-changing

steps, where a large mismatch is required, while it is changed or not in
class-conserving steps, where the optimal mismatch is moderate, and
therefore zero mismatch is expected to be acceptable.

The energetic stability of these clusters is verified in two ways: by
full global optimisation searches using a semi-empirical forcefield, and
by density functional theory (DFT) calculations on atomic pair
exchanges (seeMethods for details). Our global optimisation searches
find that the structures designed according to the path in Fig. 4 are the
lowest in energy for various binary and ternary alkali systems. Com-
plete discussion and data are reported in Supplementary Note 4.1. The
DFT data are reported in Figure 5 and Supplementary Tables 1–3 of
Supplementary Note 2. In the case of CK shell sequences, exchanges of
pairs of different atoms in adjacent shells produce energy increases. In
contrast, if MC shells of these species are assembled in the same order,
the resulting clusters are energetically unstable with respect to
exchanges of atomic pairs, because the mismatch between species is
too large for MC shells.

We have also checked the thermodynamic stability of MC@BG
and MC@BG@Ch1 structures of Fig. 4c, by performing molecular
dynamics simulations in which the temperature is progressively
increased up to melting. Our simulations reveal that the global mini-
mum structures are highly stable, as they do not undergo any struc-
tural transformation until the cluster entirely melts (see
Supplementary Note 4.2).

Our theory, therefore, provides the possibility of constructing
icosahedra in systems where the traditional Mackay icosahedra would
not be stable.

Natural growth sequences
We have demonstrated how to geometrically construct multi-shell
icosahedra and verified their energetic stability in various systems.
Another important point is to understand how they grow dynamically
in physical processes. To this end, we have performed molecular
dynamics (MD) growth simulations44, in which atoms are deposited on
pre-formed clusters. This type of simulation has been used to interpret
previous nanoparticle growth experiments24,44. The results are shown
in Fig. 6 and in Supplementary Figs. 7–11 of Supplementary Note 3.1.

As a first case, we consider the growth of multi-element alkali
clusters. In the previous section we have demonstrated the stability of
non-trivial multi-shell structures, which comprise BG and chiral shells
in the same aggregate. Here, we checkwhether these structures can be
grown in a physically realistic process. Here, and in the following,
growth temperatures are chosen to be significantly lower than the
melting temperatures of the clusters.

When starting from a Na13@Rb32 cluster (Fig. 6a), consisting of
shells (0, 0), (0, 1) and (1, 1), our rules of Fig. 2b predict that the next
shell should be of Ch1 type, i.e., (1, 2) (or equivalently (2, 1)), regardless

Fig. 4 | A pathwith spontaneous symmetry breaking. a A path connecting all BG
shells through their nearby chiral shells. Black and grey arrows indicate paths with
right and left-handed chiral shells. A generic path of this type may alternate both
chiralities, corresponding to combinations of black and grey arrows. Shells are
enumerated along the black-arrow path. b Optimal mismatch smi,i+1 according to
Eq. (3) for the path in (a). Points connected by blue and red lines correspond to

changes of species in every shell and every two shells. The optimal values of smi,i+1

are compared to the mismatch between pairs of atomic species, indicated by
squares and diamonds. The triangles correspond to the optimalmismatch between
two MC shells and two Ch1 shells. c Structures for i = 2, 3, 4 along the path of (a),
with their compositions related to specific systems. Source data of (b) are provided
as a Source Data file.
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of the size mismatch. Therefore, even when depositing atoms of the
same type, we expect such symmetry breaking to take place. This is
indeed the case, as shown in Fig. 6a, in which in the first step of the
growth a (1, 2) shell spontaneously form, leading to the
Na13@Rb32@Rb72 cluster. The symmetry breaking upon deposition of
the same species of atoms is specific to BG shells. In contrast, the
growth on the other type of achiral shell, i.e., MC shell, continues
without symmetry breaking if atoms of the same species are
deposited24.

At this point, according to our rules, two non-equivalent steps are
possible: the class-conserving step to (1, 3) and the class-changing step
to (2, 2). These steps correspond to different optimal mismatches, i.e.,
0.06 and 0.11, respectively, as estimated by Eq. (3). Since we are
keeping on depositing Rb atoms (i.e., with zero mismatches), we
expect growth to proceed by the (1, 3) step, which has the lower
optimal mismatch. Again, our prediction is verified by the growth
simulation of Fig. 6a, which further continues within the Ch1 class.

To change class after the shell (1, 2), it is necessary to deposit
atoms of a bigger size than Rb. Specifically, the mismatch should be
large enough to make the formation of the Ch1 (1, 3) shell unfavour-
able, thus addressing the growth towards the Ch2 class. At least, the
mismatch between Rb and the deposited species should be larger
than 0.06, which is the optimal value for the formation of the
Ch1 shell. From Fig. 4b, it appears that Cs atoms have the right size
(the mismatch between Rb and Cs is 0.08) and in fact, depositing Cs
atoms on Na13@Rb32@Rb72 (Fig. 6b) results in a transition to the Ch2
class, as shells (2, 2) and then (2, 3) form spontaneously during the
growth.

Further confirmation of path rule predictivity is provided in
Fig. 6c–e. In Fig. 6c, the size mismatch for the pairs AuNi, AuCo, AuFe,
AgNi, AgCo, and AgCu is compared with the optimal estimates
obtained fromEq. (3) for the addition of oneMCandoneCh1 shell on a
Mackay core. The mismatch much better corresponds to Ch1 than to

MC shells. For AuCo, AuFe, AuNi, AgNi and AgCo, Ch1 shells should
grow onMackay cores of 147 or 309 atoms (k = 3 or 4), while for AgCu
the core should be larger, of 561 atoms (k = 5). This is confirmed byMD
simulations (Fig. 6d–e) in which a Ch1 shell spontaneously forms when
depositing Ag atoms on Ni147 or Cu561 Mackay cores. The growth
continues within the Ch1 class if further Ag atoms are deposited. More
results are presented and discussed in Supplementary Note 3.

We have verified that these structures are energetically stable.
Icosahedra made of a Ni, Cu or Co Mackay core surrounded by one
Ch1 shell of Ag atoms are the lowest in energy in several cases39. When
adding a second Ch1 shell, the structures are not the lowest in energy
any more, but they are in close competition with the global minima
(see Supplementary Note 4.1). Anyway, when heated up by molecular
dynamics simulations, these MC@Ch1@Ch1 clusters preserve their
structure up to the melting temperature. Data are reported in Sup-
plementary Note 4.2.

In summary, the growth on top of icosahedral seeds naturally
proceeds according to our rules for drawing paths in the hexagonal
plane. At each stage of the growth, two possible steps (class-changing
or class-conserving step) are possible; among them, the system
spontaneously takes the step that better fits the size mismatch
between atoms of the pre-existing shell and those of the growing one.
If atoms of the same species are deposited, i.e., with zeromismatches,
the step associated with the lower optimal mismatch is taken, which is
always the class-conserving step. If one continues to deposit atoms of
the same type, further and further shells belonging to the same chir-
ality class are formed. On the other hand, the class-changing step
always requires the deposition of atoms of a different species with a
larger radius and with a size mismatch close enough to the
optimal one.

We note that almost perfect shell-by-shell growth is achieved in all
simulations due to the fast diffusion of deposited atoms on top of the
close-packed shells24.

MC@BG
MC@BG@Ch1

MC@MC
MC@MC@MC

Na13@K32 / Na13@K32@K72

Na13@Rb32 / Na13@Rb32@Rb72

Na13@K32@Rb72

+0.240 eV / +0.164 eV

+0.283 eV / +0.205 eV

+0.180 eV

+0.223 eV / +0.253 eV

+0.237 eV / +0.293 eV

+0.242 eV

Na13@K42 / Na13@K42@K92

Na13@Rb42 / Na13@Rb42@Rb92

Na13@K42@Rb92

-0.345 eV / -0.046 eV

-0.711 eV / -0.081 eV

-0.025 eV

-0.323 eV / +0.064 eV

-0.691 eV / -0.137 eV

-0.042 eV

Atomic pair exchange 2
vertex - edge

Atomic pair exchange 1
vertex - vertex

Atomic pair exchange 2
vertex - edge

Atomic pair exchange 1
vertex - vertex

a b c

fed

Fig. 5 | DFT data for atomic pair exchanges. Perfect structures before the atomic
pair exchange, either of (a)MC@BG/MC@BG@Ch1or (d)MC@MC/MC@MC@MC
type. Atoms in the second and third shells are coloured in brown and yellow,
respectively. b, c, e, f configurations after the atomic pair exchanges of two

different types. Energy differences with respect to the perfect configurations in (a)
and (d) are reported below. Positive and negative energy differences indicate
unfavourable and favourable exchange processes, respectively. Complete data are
reported in Supplementary Tables 1–3.
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Here, we have shown and discussed the growth at some selected
simulation temperatures. In Supplementary Note 3.4 we discuss the
effect of temperature on the growth, showing that this type of icosa-
hedral growthprocess is very robust, as it takes place in awide rangeof
temperatures.

Extension to anti-Mackay shells
The mapping of icosahedral structures into paths can be extended to
other cases. Here, we establish the extension to the generalised anti-
Mackay (AM) icosahedral shells of Fig. 7. AM shells are achiral and not
close-packed, since they contain non-vertex particles with coordina-
tion lower than six. Each AM shell is identified by a pair of non-negative
integers, which here we call (p, q), determining the disposition of
particles in the triangular facet of the shell (see Fig. 7a). Shells with
q =0 have been described in the original work of Mackay13, who pro-
posed the possibility of adding to the fcc tetrahedra of the Mackay
icosahedron one more shell in hexagonal close-packed (hcp) stacking.
Multi-shell icosahedra terminated by AM shells of different types have
been observed in confined aggregates of colloidal particles25,27,45.

In Supplementary Note 1.5, we demonstrate that there is a corre-
spondence betweenAMandCK shells (of chiral and BG type), as an AM
shell of indexes (p, q) has the samenumber of particles of the CK shells
with h = q + 1, k = p + q, if k > h, and k = q + 1, h = p + q if h > k (p = 1 gives
the BG shells, that are common to AM and CK structures). Therefore,
we can unambiguously identify an AM shell by the (h, k) indexes of a
corresponding CK shell, and assign to it the same lattice point on the
hexagonal plane. We group AM shells into AMn classes and denote an
AM shell by (h, k)*. The correspondencebetweenAMn andChn shells is
explicitly shown in Fig. 7b, c for n = 1, 2.

AM shells can be packed by using the same rules described for CK
ones. The same elementary steps in the hexagonal plane are allowed,
but now one can decide whether to consider the CK or the AM shell
corresponding to the endpoint of the step. In this way, a larger variety
of icosahedra can be built. Again, the stability of these structures is
ruled by the size mismatch between particles in different shells. The
optimal size mismatch for icosahedra with AM shells can be estimated
by using the same type of geometric considerationsmade for CK shells
(see Supplementary Note 1.5).

In Fig. 8a we compare the stability of all possible shells that can be
put on top of a Mackay core, namely MC, Ch1 and AM1. The optimal
mismatch of the AM1 shells is intermediate between those of the MC
and Ch1 shells (see also Supplementary Fig. 3). The mismatch for
adding an AM1 shell on a 147-atom Mackay core is close to the one of
AgCu so that an AM shell should grow by depositing Ag atoms on Cu a
Mackay core of this size. This is verified by the MD simulations of
Fig. 8b, in which we observe the formation of an Ag (1, 3)* shell.

Fromthereon, the growthproceeds in adifferentway fromthat of
Fig. 6e: a second shell of AM2 type is formed, followed by a shell of BG
type, i.e., the class is changed at each step, even though atoms of the
same type are deposited. This behaviour is due to the kinetic of the
growth process. Specifically, it is due to fourfold adsorption sites on
the surface of AM shells, which act as adatom traps and naturally lead
to the formation of AM shells of higher class. The fourfold traps hinder
the atomicmobility, causing amuch rougher growth than in the caseof
Fig. 6e. This point is discussed in detail in Supplementary Note 3.3. We
note that, even though kinetic effects dominate the process, the
growth proceeds step by step by incrementing only one shell index, as
predicted by our rules.

Fig. 6 | Growth sequences of chiral icosahedra. a Rb atoms are deposited on an
icosahedral Na13@Rb32 seed. b The seed is Na13@Rb32@Rb72, on which Cs atoms
are deposited. c Size mismatch for some transition metal pairs compared to the
optimal mismatch for a MC and a Ch1 shell on a MC core (brown and green lines,
respectively), as a functionof core size.d, e Snapshots fromgrowth simulations and
correspondingpaths for thedepositionof Ag atoms on (d) Ni147 and (g) Cu561 cores.
All simulation snapshots in (a,b,d,e) are takenatmagic sizes for the corresponding

paths. In the top and bottom rows of the snapshot sequences, we show the cluster
surface and its cross-section, respectively. In the representation of shell sequences
in the hexagonal plane, black arrows are used to connect the shells belonging to the
initial icosahedral seed, while red arrows connect the shells spontaneously formed
on top of it in the growth simulations. Na, Rb, Cs, Ni, Cu and Ag atoms are coloured
in brown, yellow, dark green, light green, orange and grey, respectively. Source
data of (c) are provided as a Source Data file.
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Finally, in Fig. 8c we show the growth of a ternary NiPdAg cluster.
We start by depositing Pd atoms on a Ni147 Mackay cluster that spon-
taneously arranges into an anti-Mackay (1, 3)* shell. The mismatch
between Ni and Pd is of 0.10, i.e., it is much larger than the optimal
mismatch for growing aMC shell (0.04), and quite close to the optimal
mismatch for a AM one (0.12, as estimated by geometrical considera-
tions). On the other hand, the optimalmismatch for the formation of a
Ch1 shell is quite larger (0.14, see Fig. 8a). If the growth is continued by
depositingAg atoms, shells (2, 3)* and then (3, 3) form.SuchAMgrowth
pathway appears to be unaffected by themismatch since it is observed
also in the case of zero mismatches of Fig. 8b. However, as for the CK
shells, one can estimate the optimal size mismatch for changing the
AM class, finding values sensibly larger than zero, and in the same
range of those calculated for the CK shells. Therefore, depositing
atoms of larger size, such as Ag (the mismatch between Pd and Ag is
0.05), is expected to be beneficial for the stability of the resulting
aggregate. Further deposition of Ag atoms leads to the formation of a
chiral Ch3 shell, of type (3, 4). Indeed, the (3, 3) BG shell can be seen
both as a generalised AM and a CK shell, and therefore it allows to
obtain a very peculiar growth sequence, in which the two families of
icosahedral shells are present in the same structure. We remark that
the growth on top of a BG shell naturally leads to the formation of a
chiral shell insteadof anAMone, due to the lackof fourfold adsorption
sites that are needed to form AM shells of class larger than 1.

Fromthe energetic point of view, also the generalised anti-Mackay
structures may present notable stability. In fact, Ni147@Pd132 and
Ni147@Pd132@Ag192 generalised anti-Mackay structures are the lowest
in energy (see also Supplementary Note 4.1).

Discussion
Here, we discuss the potential applications of the icosahedral struc-
tures described in this work, andwe suggest possible extensions of our
design strategy.

In many cases, the applications of nanoparticles stem from the
structure of their surface. Ourwork shows that to obtain a specific type
of surface shell, it is necessary to build the correct sequenceof shells in
the inner part of the nanoparticles. This is possible if different ele-
ments (two or more) are used, with the appropriate mismatch.

Applications of different kinds are also possible. For metal nano-
particles, it may be useful to protect a core (for example a magnetic
core made of Ni, Co or Fe) by covering it with another metal. Our
results indicate that for this purpose the size mismatch must be
carefully chosen, depending also on the size of the magnetic core. If
not, other asymmetric quasi-Janus structures with off-centred cores
would be much more stable (for example, see ref. 46 and Supple-
mentary Fig. 15), and the core would be protected much less
effectively.

In this work, we have treated specific examples related to metal
clusters and nanoparticles. However, we believe that our construction
can be relevant for other systems, e.g., colloidal aggregates. Colloids
interact by potentials with very short range47. In Supplementary
Note 1.6 we have shown that, for systems with short-range interaction,
it is still possible to build stable structures according to our rules.
However, the structures are less tolerant of deviations from the opti-
mal sizemismatch between shells, therefore being stable in a narrower
range of mismatch values around the optimal one. This implies that
shells must be carefully assembled to satisfy the constraints on mis-
match values. In addition, we note that in some experiments on hard-
sphere colloids, in which particle-particle attractive forces are negli-
gible, icosahedral structures have been obtained in confined environ-
ments due to entropic effects25–27. These experiments considered
colloids of equal sizes and obtained aggregates with Mackay or anti-
Mackay arrangements. Our results may be relevant also for these sys-
tems, since they may give a systematic guide on how to build those
confined colloidal systems using colloids with different sizes. In fact,
our approach, which is mostly based on general geometric con-
siderations, is able to indicate the appropriate size mismatch between
the spheres.

A natural generalisation of the results presented here concerns
in drawing paths that do not obey to the step rule (h, k) → (h, k + 1) or
(h, k) → (h + 1, k). These paths are discussed in Supplementary Note 5,
where we show that they are less likely to be physically relevant
because they lead to poor matching between atoms in adjacent
shells.

Our construction can be further generalised. Let us mention a
few possibilities. First, the paths can begin at any point in the lattice,

Ch1 (1,4) AM1 (1,4)*

Ch2 (2,5) AM2 (2,5)*

a b

c

Fig. 7 | Generalised anti-Mackay shells. a A shell of the AM family. A facet and the
complete shell are shown in the upper and lower panels. The shell is identified by
(p, q), with p number of particles on the side of the inner triangle (light green
particles in the top panel) and q number of particles between nearby vertices of the
outer and inner triangles (blue particles). In this case, (p, q) = (3, 2). In the bottom

panel, orange particles have coordination 6 within the shell, while other particles
have lower coordination. b AM1 ↔ Ch1 and (c) AM2 ↔ Ch2 correspondences.
AM1 ↔ Ch1 amounts to the rotation of the inner triangles39, whereas AM2 ↔ Ch2
involves rotations of different groups of particles, represented by different colours.
A more detailed description is in Supplementary Note 1.5.
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instead of (0,0), so that the shells enclose an empty volume. Multi-
shell structures enclosing a cavity are relevant to biological
systems34,48,49 and have been observed inmetal clusters41. Second, the
non-equivalent sites of a shell can be decorated with different types
of particles, while maintaining icosahedral symmetry. For example,
the vertex atoms in the surface shell of a metal cluster can be of a
different species than the other atoms, thus becoming isolated
impurities embedded in the surface of a different material. This
possibility is relevant to single-atom catalysis50. Moreover, the map-
ping into paths may be applied to other figures obtained by cutting
and folding the hexagonal lattice, such as octahedra and tetrahedra,
and to other lattices, including Archimedean lattices16, that can bet-
ter accommodate particles with non-spherically symmetric
interactions.

In summary, the mapping into paths is a powerful tool for the
bottom-up design of chiral and achiral aggregates of atoms, colloids
and complex molecules. The unusual geometries of these aggregates
canbeof interest in variousfields, e.g., in catalysis, optics and synthetic
biology.

Methods
Construction of the structures
Icosahedral structures are built by assembling Caspar-Klug and anti-
Mackay shells by our C++ code. The code takes as input the geometric
features of each shell, i.e., the indexes h and k of the CK construction,
the distance d between particles, and the shell type (either CK or AM).
For CK shells, the first 12 particles are placed in the vertices of the
icosahedron of edge legth sinð2π=5Þ

ffiffiffiffi
T

p
d. The other particles are

placed on the icosahedral facets according to the CK scheme: on each
facet plane, a 2D hexagonal lattice is built, which is rotated at an angle
of amplitude θCK with respect to one of the facet edges; particles are
placed on lattice points falling within the facet. For AM shells, the
indexes p and q are calculated as p = k − h + 1, q = h − 1 if k ≥ h, p = h −
k + 1, q = k − 1 otherwise. The first 12 particles are placed in the vertices
of the icosahedron of edge length ðp+

ffiffiffi
3

p
q+

ffiffiffi
3

p
� 1Þd. The other

particles are placed on the icosahedral facets according to the scheme
of Fig. 6a. A more detailed description of CK and AM shells and of the
procedure for constructing them can be found in Supplementary
Note 1.
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Fig. 8 | Growth of generalised anti-Mackay structures. a Optimal mismatch for
one AM1 shell on a Mackay core ((0, k) → (1, k)*) as a function of core size (yellow
curve), compared with Ch1 ((0, k) → (1, k)) (red curve) and Mackay shells
((0, k) → (0, k + 1)) (blue curve), for Lennard-Jones clusters. GEO values are calcu-
lated by the formula derived in Supplementary Note 1.5. Themismatch between Ag
and Cu is indicated. b, c Snapshots from MD growth simulations (with cluster
surfaces and cross sections shown in top and bottom lines, respectively) and cor-
responding paths, with AM shells indicated by squares. In (b) Ag atoms are

deposited on a Mackay Cu147 core. In (c) Pd atoms are deposited on a Ni core, and
then Ag atoms are deposited on the Ni@Pd cluster. In the top and bottom rows of
the snapshot sequences, we show the cluster surface and its cross-section,
respectively. In the representation of shell sequences in the hexagonal plane, black
arrows areused to connect the shells belonging to the initial icosahedral seed,while
red arrows connect the shells spontaneously formed on top of it in the growth
simulations. Ni, Cu, Pd and Ag atoms are coloured in light green, orange, blue and
grey, respectively. Source data of (a) are provided as a Source Data file.
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LJ and Morse potential calculations
Both potentials are pair potentials, in which the total energy E is
written as

E =
1
2

X
i≠j

uðrijÞ, ð5Þ

where rij = ∣rj − rj∣ is the distance between a pair of particles. The LJ
potential is written as

uðrÞ= ε rm
r

� �12
� 2

rm
r

� �6
	 


, ð6Þ

where ε is the well depth and rm is the equilibrium distance, which
corresponds to the particle size d. The Morse potential is written as

uðrÞ= ε e�2αðr=rm�1Þ � 2e�αðr=rm�1Þ
h i

, ð7Þ

where the dimensionless parameter α regulates the width of the
potential well, that decreases with increasing α. For α = 6 both LJ and
Morse potential have the same width of the well, i.e., the same curva-
ture at the well bottom. For α < 6 the potential well is wider than in LJ.
The chosen values α = 4, 5 give widths of the potential well similar to
those for the interaction between metal atoms. In the simulations of
Figs. 3a–d and 8a all particles were given the same value of ε (and of α
for theMorse potential), but particles of the outer shell and of the core
were given different sizes (i.e., rm= rm,c for core particles and rm= rm,s

for outer shell particles). For interactions between particles of the core
and the outer shell rm,cs = (rm,c + rm,s)/2. The structures were locally
relaxed by quenchedmolecular dynamics51 to reach the position of the
local minimum in the energy landscape.

Global optimisation searches
Global optimisation searches are performed by the Basin Hopping
algorithm52 and its extensions53,54. In all cases, at least four independent
unseeded simulations of 1-4 × 106 steps were performed, plus some
seeded simulations starting from selected structures. All global
minima reported here and in Supplementary Note 4.1 resulted from
unseeded simulations. For all systems, atom-atom interactions were
modelled by an atomistic force field, which is known as Gupta
potential55. Form and parameters of the potential can be found in
refs. 56–59.

DFT calculations
All DFT calculations were made by the open-source QUANTUM
ESPRESSO software60 using the Perdew-Burke-Ernzerhof exchange-
correlation functional61. The convergence thresholds for the total
energy, total force, and electronic calculations were set to 10−4 Ry, 10−3

Ry at.u−1. and 5 × 10−6 Ry respectively. We used a periodic cubic cell,
whose size was set to 26-48 Å, depending on the size of the cluster, in
order to ensure at least a 10 Å separation between clusters in different
periodic images. Cutoffs for wavefunction and charge density were set
to 66 and 323 Ry, according to Na.pbe-spn-kjpaw_psl.1.0.0.UPF, K.pbe-
spn-kjpaw_psl.1.0.0.UPF, Rb.pbe-spn-kjpaw_psl.1.0.0.UPF as provided
by the QUANTUM ESPRESSO pseudopotential library available at
http://pseudopotentials.quantum-espresso.org/legacy_tables/ps-
library/.

MD growth simulations
Molecular dynamics growth simulations are made by molecular
dynamics using the same type of procedure adopted in refs. 24,44. The
equations ofmotion are solved by the Velocity Verlet algorithm with a
time step of 5 fs for the simulations of AgNi, AgCu, AgCo, AuCo, AuFe,
AgPdNi and 2 fs for the simulations of NaK, NaRb, NaKRb, NaRbCs. In
all simulations, the temperature is kept constant by an Andersen

thermostat with a collision frequency of 5 × 1011 s−1. Simulations start
from a seed, which is an initial cluster, and then atoms are deposited
one by one on top of it in an isotropic way from randomdirections at a
constant rate. The simulation of Fig. 6a was started from a Na13@K32

Bergman-type seed corresponding to the path arriving to (h, k) = (1, 1)
and Rb atoms were deposited at a rate of 0.1 atomsns−1 and at a
temperature of 125 K. The simulation of Fig. 6b was started from a
Na13@Rb32@Rb72 chiral seed corresponding to the path arriving to
(h, k) = (1, 2) and Cs atoms were deposited at a rate of 0.1 atomsns−1 at
125 K. The simulation of Fig. 6c was started from a Ni147 Mackay ico-
sahedral seed corresponding to the path arriving at (h, k) = (0, 3) and
Ag atoms were deposited at a rate of 0.1 atomsns−1 at 450K. The
simulation of Fig. 6dwas started fromaCu561Mackay icosahedral seed
corresponding to the path arriving at (h, k) = (0, 5) and Ag atoms were
deposited at a rate of 0.1 atoms ns−1 at 450 K. The simulation of Fig. 8b
was started from a Cu147 Mackay icosahedral seed corresponding to
the path arriving at (h, k) = (0, 3) and Ag atomswere deposited at a rate
of 1 atomns−1 at 350 K. The simulations of Fig. 8c were started from a
Ni147 Mackay icosahedral seed corresponding to the path arriving at
(h, k) = (0, 3) and Pd atomswere deposited at a rate of 0.1 atomsns−1 at
400K. Then Ag atoms were deposited on a Ni147@Pd132 seed termi-
nated by a (1, 3)* AM1 shell, at a rate of 0.1 atoms ns−1 at 300K. For all
systems, atom-atom interactions were modelled by an atomistic force
field, which is known as Gupta potential55. The form and parameters of
the potential can be found in refs. 56–59.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request. Source data are provided in
this paper.

Code availability
Codes used in this study, such as for the MD simulations and for
constructing the multi-shell icosahedra, are available from the corre-
sponding authors upon request.
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