Riconoscere le tracce "invisibili" sulla scena del crimine con l'I.A.


Machine learning e intelligenza artificiale: nuovi strumenti nell’indagine investigativa dei crimini violenti

Uno studio dell'Università di Torino e dell'Università di Genova, in collaborazione con il Centro Antidoping di Orbassano e il R.I.S. dei Carabinieri di Roma, fornisce importanti novità sulla datazione accurata delle tracce biologiche.

Nell'ambito di una collaborazione che coinvolge il Dipartimento di Chimica dell’Università di Torino (Marco Vincenti), il Dipartimento di Farmacia dell’Università di Genova (Paolo Oliveri), il Centro Antidoping di Orbassano e il R.I.S. dei Carabinieri di Roma, è stato pubblicato sulla prestigiosa rivista scientifica Talanta uno studio sull’identificazione di tracce biologiche invisibili sulla scena di crimini violenti. Da un punto di vista criminalistico, la studio fornisce importanti novità riguardo la datazione accurata delle tracce biologiche trovate sulla scena del delitto, insieme alla loro compatibilità con il tempo stimato di perpetrazione del reato, permettendo di limitare il numero di sospetti, valutare i loro alibi e chiarire la sequenza degli eventi.

,

Uno studio sull’identificazione di tracce biologiche invisibili sulla scena di crimini violenti

Lo studio completa una ricerca del 2020 in cui si utilizzava una tecnica di imaging mediante radiazione infrarossa per visualizzare, definire i contorni e identificare la natura delle tracce biologiche invisibili (sangue, urina, liquido seminale) su tessuti di varia natura (fibre naturali e sintetiche), al fine di guidare il loro campionamento per la successiva analisi del DNA.

Nella seconda e attuale pubblicazione, i ricercatori hanno stimato il "tempo di invecchiamento", ovvero quanto tempo è trascorso dal momento in cui tale traccia biologica è stata rilasciata sul tessuto. Partendo dunque da tracce biologiche invisibili, grazie a questa ricerca se ne definisce non solo la natura e la forma, ma anche il tempo trascorso dalla sua produzione, con grandi vantaggi per l'indagine criminalistica. La difficoltà del lavoro e il suo aspetto innovativo consistono nella complessa elaborazione dei dati spettroscopici e topografici che vengono raccolti, mediante tecniche di machine learning e intelligenza artificiale.

,
Ricercatore alle prese con tracce biologiche - UniGe
Ricercatore alle prese con tracce biologiche
,

Perchè approfondire le tracce biologiche?

Nella dinamica di compimento di un crimine violento, è possibile che l’assalitore rilasci sulla scena del crimine o sugli indumenti della vittima alcune tracce biologiche, spesso talmente minuscole da essere invisibili a occhio nudo. Il rilevamento di tali tracce, particolarmente difficile su molti tessuti, è fondamentale per estrarre, amplificare e analizzare il DNA dell’individuo che le ha prodotte, identificando il presunto assalitore. Se però tale individuo è solito frequentare il luogo in cui è avvenuto il crimine, diventa altrettanto importante stabilire quando tale traccia biologica è stata rilasciata, dovendosi comprovare la contemporaneità fra il rilascio della stessa e il giorno in cui è stato commesso il delitto.

Lo studio collaborativo fa riferimento a tre tipi di tracce biologiche (sangue, urina, liquido seminale) e due tipi di tessuti (cotone e poliestere), rispettivamente idrofili e idrofobici, che vengono esaminati con uno strumento in grado di registrare lo spettro di assorbimento della radiazione infrarossa da parte del materiale su cui tale radiazione viene inviata. La risoluzione spaziale nell’analisi del tessuto è relativamente grande (500 pixel/cm2) e la scansione spettrale sufficientemente veloce da consentire di acquisire una cosiddetta “immagine iperspettrale nel vicino infrarosso” su un’area di 5×5 cm in un tempo inferiore al minuto.

,
Scheda delle tracce biologiche lasciate su diversi tessuti - UniGe
Scheda delle tracce biologiche lasciate su diversi tessuti
,

Come viene in aiuto il machine learning

La vera difficoltà dello studio non sta nell’acquisizione delle immagini iperspettrali, bensì nella capacità di estrarre le informazioni in esse contenute, essendo tali spettri apparentemente identici – nell’area spaziale esaminata e nel tempo. Ancora più difficile è la possibilità di riconoscere l’evoluzione temporale della traccia biologica in funzione del suo “invecchiamento” sul tessuto, in quanto le modificazioni chimiche della traccia biologica nel corso del processo di invecchiamento producono cambiamenti minimi dell’immagine spettrale.

La possibilità di riconoscere le minuscole differenze che sussistono fra i diversi pixel dipende dal trattamento informatico che tali immagini subiscono attraverso complessi algoritmi di “machine learning”. Gli algoritmi prima ridefiniscono le scale di misura all’interno degli spettri, affinché i diversi pixel siano confrontabili, quindi esaltano le differenze fra un pixel e l’altro, al fine di definire la natura, la forma e il perimetro della traccia. Infine, la messa a punto di ulteriori algoritmi statistico-informatici consente di esaltare le modificazioni che intervengono su ciascun pixel e ciascuna immagine allo scorrere del tempo e di collegare tali modificazioni a una scala temporale, consentendo di stimare il tempo trascorso dal momento in cui la traccia biologica è stata deposta sul tessuto (ipoteticamente il momento del delitto).

,

Riconoscere la traccia, localizzarla, fornire informazioni temporali

In conclusione, il risultato complessivo di questo studio è che, partendo da un tessuto naturale o sintetico (ad esempio, un reperto ritrovato sulla scena del crimine) su cui è presente una traccia biologica invisibile, l’abbinamento della tecnica strumentale di “imaging iperspettrale della radiazione infrarossa” con l’applicazione di algoritmi matematico-statistici di analisi dell’immagine e intelligenza artificiale consente di:

  • riconoscere se la traccia sia di sangue, urina o liquido seminale;
  • definirne la localizzazione sul tessuto e i suoi contorni, così da permetterne il campionamento per l’analisi del DNA;
  • dedurre il tempo intercorso dal momento in cui tale traccia sia stata prodotta (il momento del delitto) al momento in cui viene condotta l’indagine criminalistica, entro un periodo che si estende fino a più di 20 giorni e con un’incertezza sulla scala dei tempi compresa fra il 3.8% (sangue su cotone), il 6.6% (sangue su poliestere) e lievemente superiori per liquido seminale e urina.
,

La ricerca è stata svolta anche grazie a un finanziamento dell'Università di Genova del Bando Curiosity Driven 2020, progetto "3Depth – From 2D to 3D hyperspectral imaging exploiting the penetration depth of near-infrared radiation".