European DNA Day Essay Contest 2021
Ogni anno il 25 aprile si celebra a livello internazionale il DNA Day per ricordare la data ufficiale di pubblicazione del lavoro scientifico con il quale James Watson, Francis Crick, Maurice Wilkins, Rosalind Franklin presentarono per la prima volta la struttura del DNA.
In questo contesto, ESHG – European Society of Human Genetics bandisce un concorso (giunto quest'anno alla sua 14a edizione) riservato agli studenti europei degli ultimi due anni delle scuole superiori, denominato European DNA Day Video/Essay Contest 2021, con il quale invita i ragazzi a cimentarsi nella stesura di un elaborato scritto (massimo 750 parole) o multimediale (video di 3 minuti), in lingua inglese, seguendo una traccia fornita dalla Società stessa. I vincitori del concorso ricevono un premio in denaro che può essere utilizzato dalle scuole per acquisire materiali didattici; la premiazione avviene durante la seduta plenaria del congresso annuale della Società.
Allo European DNA Day Video/Essay Contest 2021 partecipano 12 scuole superiori liguri per un totale di oltre 166 studenti e 28 docenti. Le scuole coinvolte sono:
- Liceo Cassini (Genova)
- Liceo classico A. D’Oria (Genova)
- Liceo classico linguistico G. Mazzini (Genova)
- IIS Gastaldi-Abba (Genova)
- Liceo M.L.King (Genova)
- Liceo scientifico L. Lanfranconi (Genova)
- ISS Mjorana-Giorgi (Genova)
- Istituto Marsano (sede S.Ilario, Genova)
- IIS Da Vigo Nicoloso (Recco, Genova)
- Liceo classico Delpino (Chiavari)
- Liceo scientifico Marconi (Chiavari)
- Liceo classico Costa (La Spezia)
Il ruolo di UniGe
Visto l'interesse dimostrato dalle scuole per questo progetto, il DINOGMI – Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili dell'Università di Genova propone un ciclo di 4 seminari divulgativi, in modalità telematica, per fornire supporto per la partecipazione al bando di quest'anno.
Il primo incontro in particolare intende fornire agli studenti i concetti di base che permettano loro di seguire i seminari successivi e prevede la presentazione della traccia del contest:
“We can now sequence the genome of all life forms, from viruses to humans. What could be the point of this?” Write an essay /or shoot a video that starts with "I propose to sequence the genome of ... because ...". Think about the benefits and consequences for science and society.
I seminari
L'Università di Genova propone 4 incontri preparatori al contest, con la partecipazione di esperti che uniscono allo spessore scientifico particolari doti divulgative.
19 febbraio 2021 – ore 16
Introduzione. Nuove tecnologie di sequenziamento: non solo DNA! conosciamo il mondo dell’RNA.
Relatori: prof.ssa Beatrice Zanini (SIGU Scuola) e dott.ssa Renata Bocciardi (Università di Genova, ricercatrice e docente di Genetica Medica).
5 marzo 2021 – ore 16
Genes and genomes: the hidden beauty of our DNA
Relatore: prof. Massimo Delledonne (Università degli Studi di Verona).
Abstract: The extraordinary advances in genetics have laid the foundation for reading and understanding the information stored in our DNA, the genome. I "read" my genome for the first time in 2011 and have been constantly trying to decode it ever since. It is a difficult – but exciting – process which, in addition to benefiting me in the prevention of some diseases, helps to know myself better. But reading a genome is not enough for some of us. The next challenge of genomics is writing and reading a synthetic genome, which is free from defects and predispositions to disease. In the very near future it will be possible to give birth to human beings with a virtually perfect genetic makeup (but what does perfection mean, for a biological species?) drawn by a computer. Evolution of Homo sapiens may be then in our hands.
19 marzo 2021 – ore 16
Into the Junk – a journey into the genetic landscape
Relatore: dott. Paolo Uva (Responsabile Unità di Bioinformatica Clinica IRCCS Giannina Gaslini, Genova).
Abstract: The release of the first human genome in 2003 was a milestone in understanding our 'manual of instructions'. Surprisingly, the number of genes coding for proteins was ‘only’ 20,000, far fewer than expected and encoded by a small part of the genome. The non coding fraction, representing 98% of our DNA, was initially thought useless and called 'junk', and until recently, the sequencing has focused on the 2% of the coding genome, where mutations have higher probability to impact on the protein function. This approach is leading to the identification of the genetic causes of many diseases, although more than 50% are still undiagnosed. Scientists are naturally curious and, supported by constantly evolving technologies, they began to explore the remaining 98% of the ‘manual’ convinced that it would be a shame to read only the first two pages. We are still far from a complete understanding of “how we work”, but new mechanisms and therapeutic opportunities are emerging.
09 aprile 2021 – ore 16
Barcoding, Metabarcoding and environmental DNA (eDNA): new tools for the ecologists and zoologist of the new Millenium to assess the biodiversity of our rapidly changing Planet.
Relatore: prof. Stefano Schiaparelli (Università di Genova, Direttore del MNA – Museo Nazionale dell’Antartide – sezione di Genova).
Abstract: In 2003 Paul D.N. Hebert (University of Guelph, Canada) proposed the use of DNA barcoding (a short sequence of the mitochondrial COI gene) as a technique to facilitate the identification of freshly collected specimens from the field and speed the process of biodiversity inventorying. Since then, molecular data became a standard tool for ecologists and zoologist, which assist them in the complex task of recognizing and determining the specimens under study. In almost twenty years from his seminal paper, deep changes have occurred in biodiversity assessment procedures and we now refer to this revolution as to the “Hebertian age of taxonomy”. The Barcode of Life Database, a unique repository of barcode sequences, images and distributional data of species is the powerful interactive platform and a reference standard where species hypotheses are tested by comparing newly obtained sequences with already existing ones. Further technological advances and the everyday lower prices for sequencing promoted the adoption of other two techniques, metabarcoding (i.e. the mass collection of specimens that are homogenised, the genomic DNA extracted, mass-PCR amplified for the barcode gene of interest, e.g. COI) and environmental DNA (i.e. DNA collected from a environmental sample, e.g. seawater, without the direct collection of any physical specimen) to detect species in the field, opening unprecedented possibilities of study. We now can detect with “just” a little effort the presence of a species in the field, even without having seen it, or describe the changes of the composition of coastal plankton after short time events such as a strong wind pulse.